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Tricritical behavior in deterministic aperiodic Ising systems

T. A. S. Haddad,* Angsula Ghosh, and S. R. Salinas
Instituto de Fı´sica, Universidade de Sa˜o Paulo, Caixa Postal 66318, 05315-970, Sa˜o Paulo, SP, Brazil

~Received 20 June 2000!

We use a mixed-spin model, with aperiodic ferromagnetic exchange interactions and crystalline fields, to
investigate the effects of deterministic geometric fluctuations on first-order transitions and tricritical phenom-
ena. The interactions and the crystal-field parameters are distributed according to some two-letter substitution
rules. From a Migdal-Kadanoff real-space renormalization-group calculation, which turns out to be exact on a
suitable hierarchical lattice, we show that the effects of aperiodicity are qualitatively similar for tricritical and
simple critical behavior. In particular, the fixed point associated with tricritical behavior becomes fully unstable
beyond a certain threshold dimension~which depends on the aperiodicity!, and is replaced by a two-cycle that
controls a weakened and temperature-depressed tricritical singularity.

PACS number~s!: 05.50.1q, 05.10.Cc, 05.70.Fh, 64.60.Ak
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The introduction of quenched disorder weakens~and
sometimes eliminates! first-order transitions and tricritica
singularities in the phase diagram of statistical models.
two dimensions, rigorous arguments show that any amo
of disorder completely eliminates first-order transitions
ferromagnetic model systems@1#. In three dimensions, ap
proximate real-space and perturbative renormalization-gr
analyses@2#, as well as numerical simulations, indicate tha
finite strength of disorder is required to weaken first-ord
transitions and depress the tricritical temperature. In part
lar, disordered versions of the two-dimensional ferrom
netic q-state Potts model@3,4# ~for q.4, on the square lat
tice, the uniform model displays a first-order transition! and
the Blume-Emery-Griffiths~BEG! model @5–7# ~whose uni-
form version displays tricritical and critical-end points!,
which have been thoroughly investigated, are well adjus
to this scenario. It remains unclear the important question
what are~if any! the universality classes of the disorde
induced continuous transitions in these systems~see, for ex-
ample, a recent review by Cardy@8#!.

Instead of looking at the~presumably! more difficult
problem posed by fluctuations associated with quenched
order, in the present publication we consider the effects
first-order transitions of the geometric fluctuations intr
duced by deterministic but aperiodically distributed e
change interactions. For quenched disordered interacti
the Harris criterion@9# indicates a change in the critical be
havior of simple ferromagnets whenever the critical exp
nent associated with the singularity of the specific heat of
underlying uniform model is positive. According to a heur
tic argument of Luck@10#, which has been checked in
number of cases@ @11# and references therein#, the introduc-
tion of aperiodic interactions leads to an analogous criter
of relevance of the geometric fluctuations on the criti
~second-order! behavior. Some of us have recently show
that a similar criterion may be exactly established for fer
magnetic Potts models on Migdal-Kadanoff hierarchical l
tices, with a layered distribution of exchange interactio
according to a class of two-letter substitution rules@12,13#.
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See Fig. 1. For relevant geometric fluctuations, there app
a two-cycle of the recursion relations in parameter space
gives rise to a new universality class of~aperiodic! critical
behavior @14#. Along the lines of these investigations, w
introduce aperiodic interactions in a simple mixed-sp
model to analyze the effects on tricritical behavior and fir
order phase boundaries. It should be mentioned that re
extensive Monte Carlo calculations indicate that the ph
transition of the eight-state square-lattice Potts model is
deed driven to second order by a layered aperiodic distr
tion of exchange couplings@15#.

Besides the better known BEG model, another sim
generalization of the Ising model displaying first-order tra
sitions and tricritical points is a mixed-spin system, given
the Hamiltonian

H52(
( i , j )

Ji j s iSj1(
j

D jSj
2 , ~1!

wheres i561, for i belonging to one sublattice of a bipa
tite lattice,Sj561 or 0, for j belonging to the other sublat
tice, and the first sum is over nearest-neighbor sites on
ferent sublattices. The description of this mixed-spin mo
demands a larger unit cell than the BEG model in zero fie

FIG. 1. Example of the hierarchical cell representing part of
Migdal-Kadanoff decimation scheme. Crosses correspond
spins-1, and dots to spins-1/2. By summing over the two inter
spins of each of them branches, we obtainKA8 or DA8 .
7773 ©2000 The American Physical Society



d
ce
e
e

l-
a
-
on

is

-
-

b
ch

an
c
m

le
e

ff

ls
n

p-
he

a

t
th

ol

ic

us
y

,

nd
the

ith
al

the
e
ins
ed

o
f

tion
nce.
ick

7774 PRE 62T. A. S. HADDAD, ANGSULA GHOSH, AND S. R. SALINAS
This extra difficulty, however, poses no problem to the stu
of the model under a Migdal-Kadanoff real-spa
renormalization-group approximation. Moreover, we ne
just two scaling fields, instead of three as in the BEG mod
to describe the even space of parameters. We then take
vantage of this model, and of the simplicity of the Migda
Kadanoff approximation~which turns out to be exact on
suitable hierarchical lattice!, to introduce aperiodic interac
tions for analyzing the effects of geometric fluctuations
the main features of the phase diagram.

To obtain the Migdal-Kadanoff recursion relations, it
convenient to rewrite the Hamiltonian~1! in the equivalent
form

H52(
( i , j )

Ji j s iSj1
1

2 (
( i , j )

Di j s i
2Sj

2 . ~2!

Many ~mainly approximate! results are known for the uni
form (Ji j 5J, Di j 5D) version of this model. On a honey
comb lattice, a star-triangle transformation~summing over
Sj ) can be used to reduce the problem to an exactly solu
spin-1/2 Ising model on a simple triangular lattice, in whi
case, however, the temperature (kBT) versus ‘‘anisotropy’’
(D/J) phase diagram presents only a line of continuous tr
sitions @16#. For the so-called union jack lattice, an exa
solution can also be found for a restricted range of para
eters, by mapping the model onto an eight-vertex prob
@17#. On a lattice of sufficiently high coordination, som
effective-field @18# and self-consistent@19# approximations,
as well as a Bethe lattice calculation@20#, suggest the
existence of a first-order boundary that becomes al line
beyond a tricritical point. A detailed Migdal-Kadano
renormalization-group calculation@21# predicts the existence
of a tricritical point on hypercubic lattices of dimensiond
*2.1, which precludes the case of planar lattices. This is a
confirmed by renormalization-group calculations in mome
tum space@21#, at the one-loop approximation, that do su
port the existence of the tricritical point predicted by t
Curie-Weiss version of the model. Monte Carlo@22# and
numerical transfer matrix calculations@23# point out in this
direction as well, with no indication of tricritical phenomen
in this mixed-spin model on a square lattice.

We now consider Hamiltonian~2! and suppose thatJi j
~andDi j ) may assume one out of two values,JA or JB (DA
or DB), according to the sequence of letters generated by
iteration of a substitution rule. In this paper, we work wi
two distinct binary rules,

~ i! A→ABB, B→AAA ~3!

and

~ ii ! A→AAB, B→AAA. ~4!

For example, the iteration of the first rule leads to the f
lowing stages:

A→ABB→ABBAAAAAA→•••. ~5!

Each rule is characterized by a substitution matrix, wh
relates the number of lettersA and B in one stage of the
y
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iteration with the corresponding numbers in the previo
stage. For the first rule, the substitution matrix is given b

M5S 1 3

2 0D ,

with eigenvaluesl153 andl2522. For the second rule
we have

M5S 2 3

1 0D ,

with eigenvaluesl153 andl2521. In a given stage of the
iteration, the fluctuation in the number of lettersA or B rela-
tive to the mean number behaves asymptotically asNv,
whereN is the total number of letters in the sequence, a
v5 lnul2u/ln l1 is a wandering exponent. We thus see that
first rule, with a wandering exponentv5 ln 2/ln 3, gives rise
to stronger geometric fluctuations than the second one, w
v50, and should be more effective in perturbing the critic
behavior.

The Migdal-Kadanoff ~MK ! approximation on a
d-dimensional hypercubic lattice turns out to be exact on
hierarchical cell shown in Fig. 1. For this type of cell, th
MK scheme corresponds to a decimation of the two sp
located along each bond, a spin-1/2 and a spin-1, follow
by the moving and collapsing ofm such bonds. There is als
a relationship, d511 ln m/ln 3, between the number o
branchesm and the Euclidean dimensiond. Note that the
renormalization procedure amounts to a reverse applica
of the substitution rule generated by the aperiodic seque
Also, note that we can as well perform the more usual tr
of bond-moving before decimation~which is also exact on a
suitable hierarchical lattice!, but the qualitative results
should not depend on this choice.

For the first aperiodic rule,A→ABB, B→AAA, the MK
procedure yields the recursion relations

KA852
m

2
lnH exp~KA!1exp~2KA!cosh~2KB!

1cosh~KB!expS DA

2
1

DB

2 D J
1

m

2
lnH exp~KA!cosh~2KB!1exp~2KA!

1cosh~KB!expS DA

2
1

DB

2 D J , ~6!

KB852
m

2
ln$exp~KA!1exp~2KA!cosh~2KA!

1cosh~KA!exp~DA!%1
m

2
ln$exp~KA!cosh~2KA!

1exp~2KA!1cosh~KA!exp~DA!%, ~7!
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DA852m lnH exp~2DB!Fexp~KA!1exp~2KA!cosh~2KB!

1cosh~KB!expS DA

2
1

DB

2 D GFexp~KA!cosh~2KB!

1exp~2KA!1cosh~KB!expS DA

2
1

DB

2 D G
3F2 cosh~KA!cosh~KB!1expS DA

2
1

DB

2 D G22J , ~8!

DB852m ln$exp~2DA!@exp~KA!1exp~2KA!cosh~2KA!

1cosh~KA!exp~DA!#@exp~KA!cosh~2KA!

1exp~2KA!1cosh~KA!exp~DA!#

3@2 cosh2~KA!1exp~DA!#22%, ~9!

whereKA,B5bJA,B andDA,B5bDA,B , with b51/kBT. For
all values ofm>1, these recursion relations have a set
trivial fixed points, given by

P1[~KA* ,KB* ,DA* ,DB* !5~0,0,2`,2`!, ~10!

which is a sink of high-density paramagnetic phase~where
the density is related to the mean value^Si

2&, so that low
density means the predominance of spin 0),

P2[~KA* ,KB* ,DA* ,DB* !5~0,0,̀ ,`!, ~11!

which is a sink of low-density paramagnetic phase,

O[~KA* ,KB* ,DA* ,DB* !5~0,0,0,0!, ~12!

corresponding to the high-temperature boundary between
paramagnetic phases,

F1[~KA* ,KB* ,DA* ,DB* !5~`,`,2`,2`!, ~13!

associated with a zero-temperature high-density ferrom
netic phase, and

F2[~KA* ,KB* ,DA* ,DB* !5~`,`,`,`!, ~14!

with DA,B* /KA,B* 52, which corresponds to a zero-temperatu
low-density ferromagnetic phase.

For m.1 ~which corresponds tod.1), there is a non-
trivial fixed point atDA* 5DB* 52`, for KA* 5KB* finite. This
fixed point, which we shall callI, is associated with the criti
cal behavior of the simple spin-1/2 Ising model, since fixi
the crystal field~biquadratic exchange! at 2` completely
prevents theS spins to assume 0 values. In this spin-1
space, it should be pointed out that the recursion relati
also present atwo-cycle~that is, a set of two fixed points o
the second iterate!. As discussed in a recent publication@14#,
this two-cycle is associated with the new universality class
the aperiodic ferromagnetic Ising model. Indeed, the criti
behavior of the Ising model on the hierarchical lattice und
lying the MK approximation, and with aperiodic interaction
according to the ruleA→ABB, B→AAA, is controlled by
this two-cycle, the singularity being weaker as compa
with the uniform~periodic! model.
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For m*3.33 ~numerical evidence points in fact to 10/3
corresponding tod*2.1 ~or ln10/ln 352.0959. . . , assug-
gested by the numerical calculations!, there appear two nove
nontrivial fixed points. In the uniform case (JA5JB , DA
5DB), Quadros and Salinas@21# have shown that one o
them is a discontinuity fixed point, associated with a fir
order phase transition~according to an application of th
Nienhuis and Nauenberg criterion for the identification
discontinuity fixed points!. On the basis of a detailed analy
sis of the connectivity of the flow lines in parameter spa
the other fixed point of the uniform model was shown@21# to
be associated with the tricritical behavior. In the unifor
case, the discontinuity fixed point displays a saddle cha
ter, with an attractive manifold emerging from the zer
temperature high-density ferromagnetic trivial fixed poi
and from the tricritical fixed point~see Fig. 2, where a sche
matic view of the flows is presented!. The repulsive direc-
tions flow towards the sink of the low-density paramagne
phase, and towards the zero-temperature low-density fe
magnetic trivial fixed point. The stable manifold is thus a
sociated with a first-order line. The fully unstable tricritic
fixed point is connected with the Ising,D52`, fixed point,
giving rise to a second-order boundary.

In the present aperiodic case, form*3.33, these two fixed
points still appear in theKA5KB , DA5DB , subspace, bu
since the parameter space is four dimensional we have t
careful to generalize the overall picture of the last paragra
In fact, we should pay attention to the fact that now there
four scaling fields: the reduced temperature,two crystal
fields ~instead of only one, as in the uniform case!, and the
strengthof the aperiodicity, as measured, for example, by
ratio r 5JA /JB . This last scaling field, which is of a com
pletely different nature, is the determinant factor for t
analysis of stability of the fixed points against aperiodicity.
it turns out to be relevant around a certain fixed point,
means that this fixed point cannot be reached unlessr as-
sumes a well-defined value, usually unity, so that a
amount of aperiodicity changes the critical behavior co
trolled by this particular fixed point. On the other hand,
relevancy of this scaling field suggests that, whatever
strength of the geometric fluctuations, this fixed point co
tinues to control the critical behavior.

Consider nowm53.4 ~dimension d'2.1). The fixed
points are atKA* 5KB* 51.5248. . . , DA* 5DB* 52.2118 . . .
~discontinuity fixed point in the uniform model!, and KA*

FIG. 2. Schematic view of the renormalization-group flows
parameter space, for the uniform version of the mixed-spin Is
model, withK in the vertical axis, andD in the horizontal.T is the
tricritical fixed point, andD is the discontinuity one.
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5KB*51.1447. . . , DA* 5DB* 51.3953 . . . ~tricritical fixed
point of the uniform case!. The linearization of the recursio
relations~6!–~9!, in the neighborhood of this fixed point lea
to the eigenvalues

L154.3687. . . , L250.7705. . . ,

L3523.8520. . . , L4520.5825 . . . .

The first two eigenvalues are the same as in the uniform c
The modulus of the last two eigenvalues indicates the p
ervation of the saddle character of this fixed point. The l
earization about the second fixed point yields the eigenva

L154.1671. . . , L251.2360. . . ,

L3523.7346. . . , L4520.9194 . . . .

Again, L1 and L2 assume the same values of the unifo
case. The modulus of the third eigenvalue is larger than 1
far preserving the unstable character of the uniform tricriti
fixed point. The last eigenvalue, however, indicates an att
tive direction towards this fixed point, in contrast to the u
form model, in which case the tricritical fixed point is full
unstable. However, we have already remarked that a g
characteristic fixed point associated with the uniform mo
still controls the critical behavior of the aperiodic syste
only if the strength of the aperiodicity is an irrelevant scali
field. This is precisely what is happening in this case. T
modulus ofL4 asserts that the tricritical fixed point assoc
ated with the uniform model can be reached, even in
presence of aperiodicity.

An analysis of the flow lines of the recursion relations
parameter space fully supports the idea that these two fi
points continue to perform exactly the same functions in
aperiodic as well as in the uniform case. In other words,
first one is indeed a discontinuity fixed point, and the oth
one is associated with the tricritical behavior. In a pha
diagram consisting of temperature, crystal fields, and
aperiodicity ratio r, there exists then a line of tricritica
points extending along ther direction. Finally, we note tha
L3 and L4 are negative, for both fixed points. This is
common situation for these aperiodic systems@14#, which
reflects a flipping approximation to~or furthering from! the
fixed points, and is related to the discrete nature of the re
malization procedure and to the existence of two compe
energy scales,A andB.

For larger dimensions~larger values ofm), this whole
picture is changed. Take, for example,m59, corresponding
to three dimensions. The discontinuity fixed point of the u
form model is located atKA* 5KB* 54.8427. . . , DA* 5DB*
59.0255 . . . . The tricritical fixed point is located atKA*
5KB* 50.4514. . . , DA* 5DB* 50.2190 . . . . The linearization
of the recursion relations in the neighborhood of these fi
points lead to the eigenvalues

L1512.0154. . . , L250.0032. . . ,

L35210.5075. . . , L4520.0002 . . .

around the discontinuity fixed point~the first two eigenval-
ues are the same as in the uniform case!, and
e.
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L159.1600. . . , L252.5865. . . ,

L3529.0707. . . , L4521.7413 . . .

around the second fixed point~again, the first two eigenval
ues are the same as in the uniform case!. Note that this time
the modulus of all of the eigenvalues of the uniform tricri
cal fixed point are larger than unity, which means that it
fully unstable against any aperiodic perturbations. Hence
cannot be reached whatever the strength of the geom
fluctuations, except in the trivial, uniform case,JA5JB ,
DA5DB . As in the case of the spin-1/2 critical fixed poin
(DA5DB52`), there also appears a two-cycle of the r
cursion relations. This two-cycle is located at

~KA* ,KB* ,DA* ,DB* !1

5~0.3759. . . ,4.5304. . . ,0.1472. . . ,8.0027 . . .!

and

~KA* ,KB* ,DA* ,DB* !2

5~2.0653. . . ,0.2772. . . ,3.4221. . . ,0.0905 . . .!.

As discussed in a previous publication@14#, we should
now study the behavior of thesecond iterateof the recursion
relations around any one of the points belonging to the tw
cycle. From the linearization of the second iterates of
recursion relations about these points, we have the eigen
ues

L15114.3038. . . , L2582.0353. . . ,

L355.1867. . . , L450.0014 . . . .

Now there is at least one eigenvalue with a modulus less t
1, which guarantees that the two-cycle is physically acc
sible. From a numerical analysis of the connectivity of t
flow lines in parameter space, we can check that this tw
cycle is indeed associated with the tricritical behavior~in
analogy with the second-order transitions associated with
two-cycle in the spin-1/2 subspace!.

For m527, corresponding tod54, we have the same
general features. The uniform tricritical fixed point is ful
unstable, and there appears a two-cycle, which is presum
associated with a novel tricritical behavior. Numerical calc
lations point out that the two-cycle appears as a kind of
furcation of the uniform tricritical fixed point, atm'3.45
~corresponding tod'2.13). Further numerical work show
that, for a given ratioJA /JB , the temperature that locates th
system inside the basin of attraction of the two-cycle~that is,
the tricritical temperature! is systematically lower as com
pared with the tricritical temperature of the uniform mod
~and thus leads to a smaller first-order region in the ph
diagram!. These features are also generally present in dis
dered tricritical systems in three dimensions@5#.

For the aperiodic ruleA→AAB, B→AAA, with a smaller
wandering exponent (v50 in comparison with v
5 ln 2/ln 3 for the previous sequence!, we have a different se
of recursion relations, but the results are similar. In this ca
the calculations show that the uniform tricritical fixed poi
remains accessible~there is one eigenvalue with modulu
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less than 1) whatever the value ofm. The smaller eigenvalue
around the tricritical fixed point approaches unity asm goes
to infinity. Weaker geometric fluctuations are therefore u
able to relevantly perturb the system, whose multicritical
havior remains unchanged with respect to the unifo
model.

In conclusion, we have studied the effects of determinis
aperiodicity on a simple system that displays first- a
second-order transition lines and a tricritical point. Using
simple Migdal-Kadanoff approximation, we show that a c
tain class of nonrandom geometric fluctuations may cha
the tricritical behavior~by turning into a fully unstable node
the fixed point associated with the uniform tricritical beha
e

e

a

-
-

c
d
a
-
e

-

ior!. There is then a two-cycle of the recursion relations t
is shown to control the tricritical behavior. Numerical calc
lations indicate a depression of the tricritical temperatures~as
it used to happen in the presence of quenched disorder!. In
spite of the limitations of the MK approximation~or, alter-
natively, the artificiality of the hierarchical lattices in whic
it turns out to be exact!, the results of this investigation pro
vide suggestions for the analysis of multicritical behavior
similar systems on realistic Bravais lattices.
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sions. This work has been supported by the Brazilian age
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