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Tricritical behavior in deterministic aperiodic Ising systems
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We use a mixed-spin model, with aperiodic ferromagnetic exchange interactions and crystalline fields, to
investigate the effects of deterministic geometric fluctuations on first-order transitions and tricritical phenom-
ena. The interactions and the crystal-field parameters are distributed according to some two-letter substitution
rules. From a Migdal-Kadanoff real-space renormalization-group calculation, which turns out to be exact on a
suitable hierarchical lattice, we show that the effects of aperiodicity are qualitatively similar for tricritical and
simple critical behavior. In particular, the fixed point associated with tricritical behavior becomes fully unstable
beyond a certain threshold dimensigrhich depends on the aperiodigifyand is replaced by a two-cycle that
controls a weakened and temperature-depressed tricritical singularity.

PACS numbgs): 05.50:+q, 05.10.Cc, 05.70.Fh, 64.60.Ak

The introduction of quenched disorder weakef@md  See Fig. 1. For relevant geometric fluctuations, there appears
sometimes eliminatesfirst-order transitions and tricritical a two-cycle of the recursion relations in parameter space that
singularities in the phase diagram of statistical models. Irgives rise to a new universality class @periodig critical
two dimensions, rigorous arguments show that any amourfiehavior[14]. Along the lines of these investigations, we
of disorder completely eliminates first-order transitions inintroduce aperiodic interactions in a simple mixed-spin
ferromagnetic model systeni4]. In three dimensions, ap- model to analyze the effects on tricritical behavior and first-
proximate real-space and perturbative renormalization-grouprder phase boundaries. It should be mentioned that recent
analyse$2], as well as numerical simulations, indicate that aéxtensive Monte Carlo calculations indicate that the phase
finite strength of disorder is required to weaken first-ordertransition of the eight-state square-lattice Potts model is in-
transitions and depress the tricritical temperature. In particudeed driven to second order by a layered aperiodic distribu-
lar, disordered versions of the two-dimensional ferromagdtion of exchange couplings5].
netic g-state Potts moddB,4] (for >4, on the square lat- Besides the better known BEG model, another simple
tice, the uniform model displays a first-order transiliamd ~ generalization of the Ising model displaying first-order tran-
the Blume-Emery-Griffith§BEG) model[5-7] (whose uni-  Sitions and tricritical points is a mixed-spin system, given by
form version displays tricritical and critical-end poipts the Hamiltonian
which have been thoroughly investigated, are well adjusted
to this scenario. It remains unclear the important question of __ B 2
what are(if any) the universality classes of the disorder- = (.2,) ‘]”U'S’Jr; D;Si’ @)
induced continuous transitions in these systése®, for ex-
ample, a recent review by Cardig]). whereg;= =1, for i belonging to one sublattice of a bipar-

Instead of looking at the(presumably more difficult tite lattice,S;==1 or 0, forj belonging to the other sublat-
problem posed by fluctuations associated with quenched disice, and the first sum is over nearest-neighbor sites on dif-
order, in the present publication we consider the effects offerent sublattices. The description of this mixed-spin model
first-order transitions of the geometric fluctuations intro-demands a larger unit cell than the BEG model in zero field.
duced by deterministic but aperiodically distributed ex-
change interactions. For quenched disordered interactions,

S S
the Harris criteriorf9] indicates a change in the critical be- X
havior of simple ferromagnets whenever the critical expo- A
nent associated with the singularity of the specific heat of the
underlying uniform model is positive. According to a heuris- c
tic argument of Luck[10], which has been checked in a B
number of caseg[11] and references therdirthe introduc- —_—> AN
S
B
(o}

tion of aperiodic interactions leads to an analogous criterion
of relevance of the geometric fluctuations on the critical
(second-orderbehavior. Some of us have recently shown
that a similar criterion may be exactly established for ferro-
magnetic Potts models on Migdal-Kadanoff hierarchical lat-
tices, with a layered distribution of exchange interactions
according to a class of two-letter substitution rulég,13. FIG. 1. Example of the hierarchical cell representing part of the

Migdal-Kadanoff decimation scheme. Crosses correspond to

spins-1, and dots to spins-1/2. By summing over the two internal

*Email address: thaddad@if.usp.br spins of each of then branches, we obtaik, or A, .
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This extra difficulty, however, poses no problem to the studyiteration with the corresponding numbers in the previous
of the model under a Migdal-Kadanoff real-spacestage. For the first rule, the substitution matrix is given by
renormalization-group approximation. Moreover, we need
just two scaling fields, instead of three as in the BEG model, 1 3
to describe the even space of parameters. We then take ad- M :< )
vantage of this model, and of the simplicity of the Migdal- 2 0/’
Kadanoff approximatiofwhich turns out to be exact on a
suitable hierarchical lattigeto introduce aperiodic interac-
tions for analyzing the effects of geometric fluctuations on
the main features of the phase diagram.

To obtain the Migdal-Kadanoff recursion relations, it is

with eigenvalues\;=3 andA,=—2. For the second rule,
we have

convenient to rewrite the Hamiltoniail) in the equivalent 2 3
form M= ,
10
H=—, J--a-s-+12 D 0?S? ) L ,
& TSI g ey T with eigenvalues ;=3 and\,=—1. In a given stage of the

iteration, the fluctuation in the number of lettekr B rela-

Many (mainly approximateresults are known for the uni- tive to the mean number behaves asymptoticallyNets
form (J;;=J, D;;=D) version of this model. On a honey- whereN is thg total numper of letters in the sequence, and
comb lattice, a star-triangle transformatigsumming over ~@=N[\ol/IN\; is a wandering exponent. We thus see that the
S;) can be used to reduce the problem to an exactly solublBrst rule, with a wandering exponeni=In 2/In 3, gives rise
spin-1/2 Ising model on a simple triangular lattice, in whicht0 stronger geometric fluctuations than the second one, with
case, however, the temperatutesT) versus “anisotropy” w=0, _and should be more effective in perturbing the critical
(D/J) phase diagram presents only a line of continuous tranP€havior. o
sitions [16]. For the so-called union jack lattice, an exact 1he Migdal-Kadanoff (MK) approximation on a
solution can also be found for a restricted range of param@-dimensional hypercubic lattice turns out to be exact on the
eters, by mapping the model onto an eight-vertex promenlplerarchmal cell shown in Fig. 1. F_or thls type of cell, th_e
[17]. On a lattice of sufficiently high coordination, some MK scheme corresponds to a decimation of the two spins
effective-field[18] and self-consisterftL9] approximations, ~located along each bond, a spin-1/2 and a spin-1, followed
as well as a Bethe lattice calculatid20], suggest the Dy the moving and collapsing @ such bonds. There is also
existence of a first-order boundary that becomes tine @ relationship,d=1+Inm/Iin3, between the number of
beyond a tricritical point. A detailed Migdal-Kadanoff Pranchesm and the Euclidean dimensiah Note that the
renormalization-group calculatid21] predicts the existence 'enormalization procedure amounts to a reverse application
of a tricritical point on hypercubic lattices of dimensian of the substitution rule generated by the aperiodic sequence.
=2.1, which precludes the case of planar lattices. This is als§S0, note that we can as well perform the more usual trick
confirmed by renormalization-group calculations in momen-Of bond-moving before decimatidwhich is also exact on a
tum spacd21], at the one-loop approximation, that do sup- suitable hierarchical Iatpc)e b_ut the qualitative results
port the existence of the tricritical point predicted by theShould not depend on this choice.
Curie-Weiss version of the model. Monte Cafl22] and For the first aperiodic ruleA—ABB, B—AAA, the MK
numerical transfer matrix calculatiofi3] point out in this ~ Procedure yields the recursion relations
direction as well, with no indication of tricritical phenomena
in this mixed-spin model on a square lattice. m

We now consider Hamiltonia2) and suppose that;; Kpy=— Eln[exp(KA)+exp(—KA)cosh2KB)
(andDj;) may assume one out of two valuds, or Jg (Da
or Dg), according to the sequence of letters generated by the Ay Ap
iteration of a substitution rule. In this paper, we work with +COSKKB)6XD(7+ > ]
two distinct binary rules,

m

(i) A—ABB, B—AAA 3 + iln[exp(KA)cosr(ZKB)+exr(—KA)

and Apx Ag
+coshiKg)exp o=+ 5 1 (6)

(i) A—AAB, B—AAA 4
For example, the iteration of the first rule leads to the fol- ) m
lowing stages: Kg=— Eln{exp( Ka)+exp —Ka)cosh 2K ,)

A—ABB—ABBAAAAAA----. (5)

m
+coshK)expAp)}+ Eln{exp( Ka)cosh2Kp)
Each rule is characterized by a substitution matrix, which

relates the number of lette’s and B in one stage of the +exp(—Kju) +cosiKa)exp(Ap)}, (7)
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Af=—m In{ exp(—Ag)| expK )+ exp( — K ,) cosh{ 2K g) F. F-
AA AB D
+cosr(KB)exp<—+ — | || exp(Ka)cosh2Kg)
2 2 \ _____ & ~J
Ay Ag I
+exp—Kpu)+coshKg)ex 7+ >
P, P.
Ay Ag|]7?
X | 2 coshiK 4)cosiKg) + ex 7+7 , (8 0o
FIG. 2. Schematic view of the renormalization-group flows in
Ag=—min{exp(—Ap)[exp(Ka) +exp —Ka)cosh 2K ») parameter space, for the uniform version of the mixed-spin Ising

model, withK in the vertical axis, and in the horizontalT is the

+cosiKp)exp(Aa) J[expKa)cosh2K ») tricritical fixed point, andD is the discontinuity one.

+exp—Kpu)+coshiKy)expA
=K Ka)exp(An)] For m=3.33 (numerical evidence points in fact to 10/3),

X[2 cos(Kp)+expAn)] 2}, (9)  corresponding tad=2.1 (or In10/In 3=2.0959. . ., assug-
) gested by the numerical calculationthere appear two novel
whereKp g=pBJag andA, g=pBDpp, With B=1/kgT. For  pontrivial fixed points. In the uniform casel{=Jg, Da
aI_I _valqes ofmzl, these recursion relations have a set of-p.) Quadros and Salind21] have shown that one of
trivial fixed points, given by them is a discontinuity fixed point, associated with a first-
ok e Ak aw order phase transitiofaccording to an application of the
P =(Ka.Kg.Ax,A5)=(0,0,,—=), 10 Nienhuis and Nauenberg criterion for the identification of
discontinuity fixed points On the basis of a detailed analy-
sis of the connectivity of the flow lines in parameter space,
the other fixed point of the uniform model was shoj@d] to
be associated with the tricritical behavior. In the uniform

which is a sink of high-density paramagnetic phashere
the density is related to the mean val(&f), so that low
density means the predominance of spin 0),

P_=(KX K& A% A%)=(0,0%,%), (11  case, the discontinuity fixed point displays a saddle charac-
ter, with an attractive manifold emerging from the zero-
which is a sink of low-density paramagnetic phase, temperature high-density ferromagnetic trivial fixed point,
and from the tricritical fixed pointsee Fig. 2, where a sche-
O=(Kj} ,Kg,Ax,A5)=(0,0,0,0, (12 matic view of the flows is presentedThe repulsive direc-

, ) tions flow towards the sink of the low-density paramagnetic
corresponding to the high-temperature boundary between the,ase, and towards the zero-temperature low-density ferro-
paramagnetic phases, magnetic trivial fixed point. The stable manifold is thus as-
sociated with a first-order line. The fully unstable tricritical
fixed point is connected with the Ising,= —«, fixed point,

associated with a zero-temperature high-density ferromagiVing rise to a second-order boundary.

F+E(KK7K§1AX1A§):(mlooy_ooa_m)i (13)

netic phase, and In the present aperiodic case, foe 3.33, these two fixed
points still appear in th& ,=Kg, Ay=Ag, subspace, but
F_=(Kx ,K§,Ax ,Af)=(c0,0,0,x), (14)  since the parameter space is four dimensional we have to be

careful to generalize the overall picture of the last paragraph.

with A} g/K3 g=2, which corresponds to a zero-temperatureln fact, we should pay attention to the fact that now there are
low-density ferromagnetic phase. four scaling fields: the reduced temperatutelo crystal

For m>1 (which corresponds tal>1), there is a non- fields (instead of only one, as in the uniform c@sand the
trivial fixed point atAx =A% = —oo, for Kx =K} finite. This  strengthof the aperiodicity, as measured, for example, by the
fixed point, which we shall call, is associated with the criti- ratio r=J,/Jg. This last scaling field, which is of a com-
cal behavior of the simple spin-1/2 Ising model, since fixingpletely different nature, is the determinant factor for the
the crystal field(biquadratic exchangeat — completely —analysis of stability of the fixed points against aperiodicity. If
prevents theS spins to assume 0 values. In this spin-1/2it turns out to be relevant around a certain fixed point, it
space, it should be pointed out that the recursion relationgeans that this fixed point cannot be reached unteas-
also present avo-cycle(that is, a set of two fixed points of sumes a well-defined value, usually unity, so that any
the second iterajeAs discussed in a recent publicatidi], amount of aperiodicity changes the critical behavior con-
this two-cycle is associated with the new universality class ofrolled by this particular fixed point. On the other hand, ir-
the aperiodic ferromagnetic Ising model. Indeed, the criticarelevancy of this scaling field suggests that, whatever the
behavior of the Ising model on the hierarchical lattice understrength of the geometric fluctuations, this fixed point con-
lying the MK approximation, and with aperiodic interactions tinues to control the critical behavior.
according to the ruldA—ABB, B—AAA, is controlled by Consider nowm=3.4 (dimensiond~2.1). The fixed
this two-cycle, the singularity being weaker as comparedoints are atKx=Kg=15248 .., Ax=A5=22118...
with the uniform(periodig model. (discontinuity fixed point in the uniform modeland K
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=K§=1.1447..., ARx=A}§=1.3953... (tricritical fixed A;=9.1600..., A,=2.5865...,
point of the uniform cage The linearization of the recursion
relations(6)—(9), in the neighborhood of this fixed point lead A3=-9.0707..., A,=-1.7413...

to the eigenvalues _ o . .
around the second fixed poifdagain, the first two eigenval-

A1=4.3687..., A,=0.7705.., ues are the same as in the uniform gadote that this time
the modulus of all of the eigenvalues of the uniform tricriti-
A3=-3.8520.., A4=-058%.... cal fixed point are larger than unity, which means that it is

fully unstable against any aperiodic perturbations. Hence, it

The first two eigenvalues are the same as in the uniform casgannot be reached whatever the strength of the geometric
The modulus of the last two eigenvalues indicates the presyctuations except in the trivial, uniform casd,=Jg

ervation of the saddle character of this fixed point. The lin-p, —p_ . As in the case of the spin-1/2 critical fixed point
earization about the second fixed point yields the eigenvalue(sDA:DB: — ), there also appears a two-cycle of the re-
Ay=4.1671.., A,=1.2360..., cursion relations. This two-cycle is located at

(K* ’ El KIAE):L

=(0.3759..,4.5304...,0.1472 ..,8.0027. . )

A3=—3.7346..., A4=—0091%... .

Again, A; and A, assume the same values of the uniform

case. The modulus of the third eigenvalue is larger than 1, sand

far preserving the unstable character of the uniform tricritical v s ok aw

fixed point. The last eigenvalue, however, indicates an attrac-  (Ka.Kg,Ax,Ag)2

tive direction towards this fixed point, in contrast to the uni- —(2.0653 ..,0.2772 .. 3.4221 .. 0.0905. . )
form model, in which case the tricritical fixed point is fully ' B B B e
unstable. However, we have already remarked that a given as discussed in a previous publicati¢h4], we should

characteristic fixed point associated with the uniform model,q, study the behavior of theecond iteratef the recursion
still controls the critical behavior of the aperiodic systemyg|ations around any one of the points belonging to the two-
only if the strength of the aperiodicity is an irrelevant scallngcyc|e_ From the linearization of the second iterates of the

field. This is precisely what is happening in this case. Th&ecyrsion relations about these points, we have the eigenval-
modulus ofA, asserts that the tricritical fixed point associ- e

ated with the uniform model can be reached, even in the

presence of aperiodicity. A;=114.3038.., A,=82.0353..,
An analysis of the flow lines of the recursion relations in
parameter space fully supports the idea that these two fixed A3;=5.1867..., A,=0.004....

points continue to perform exactly the same functions in the
aperiodic as well as in the uniform case. In other words, théNow there is at least one eigenvalue with a modulus less than
first one is indeed a discontinuity fixed point, and the otherl, which guarantees that the two-cycle is physically acces-
one is associated with the tricritical behavior. In a phasesible. From a numerical analysis of the connectivity of the
diagram consisting of temperature, crystal fields, and thélow lines in parameter space, we can check that this two-
aperiodicity ratior, there exists then a line of tricritical cycle is indeed associated with the tricritical behavior
points extending along thedirection. Finally, we note that analogy with the second-order transitions associated with the
A5 and A, are negative, for both fixed points. This is a two-cycle in the spin-1/2 subspgce
common situation for these aperiodic systefthd], which For m=27, corresponding tal=4, we have the same
reflects a flipping approximation t@r furthering fron) the  general features. The uniform tricritical fixed point is fully
fixed points, and is related to the discrete nature of the renordnstable, and there appears a two-cycle, which is presumably
malization procedure and to the existence of two competingssociated with a novel tricritical behavior. Numerical calcu-
energy scalesh andB. lations point out that the two-cycle appears as a kind of bi-
For larger dimensionglarger values ofm), this whole furcation of the uniform tricritical fixed point, ain~3.45
picture is changed. Take, for exampie=9, corresponding (corresponding tal~2.13). Further numerical work shows
to three dimensions. The discontinuity fixed point of the uni-that, for a given ratid,/Jg, the temperature that locates the
form model is located akKj =K} =4.8427..., Ax=A} system inside the basin of attraction of the two-cydhat is,

=9.0255... . The tricritical fixed point is located k&,  the tricritical temperatupeis systematically lower as com-
=K5=0.4514 .., AX=A%=0.2190. .. . The linearization pared with the tricritical temperature of the uniform model

of the recursion relations in the neighborhood of these fixed@nd thus leads to a smaller first-order region in the phase
points lead to the eigenvalues dlagranj_. These features_ are also _generc_';llly present in disor-
dered tricritical systems in three dimensid5s.

A;=12.0154.., A,=0.0032.., For the aperiodic ruld—AAB, B—AAA, with a smaller
wandering exponent «=0 in comparison with
Az=-10.5075.., A,=-0.0002... =In 2/In 3 for the previous sequengeve have a different set

of recursion relations, but the results are similar. In this case,
around the discontinuity fixed poirithe first two eigenval- the calculations show that the uniform tricritical fixed point
ues are the same as in the uniform ¢ased remains accessibléhere is one eigenvalue with modulus
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less than 1) whatever the valuerof The smaller eigenvalue ior). There is then a two-cycle of the recursion relations that
around the tricritica' fixed point approaches unitymgoes is shown to control the tricritical behavior. Numerical calcu-
to infinity. Weaker geometric fluctuations are therefore un-ations indicate a depression of the tricritical temperat(ass
able to relevantly perturb the system, whose multicritical beit used to happen in the presence of quenched disprier
havior remains unchanged with respect to the unifornmspite of the limitations of the MK approximatiofor, alter-
model. natively, the artificiality of the hierarchical lattices in which
In conclusion, we have studied the effects of deterministidt turns out to be exagtthe results of this investigation pro-
aperiodicity on a simple system that displays first- andvide suggestions for the analysis of multicritical behavior in
second-order transition lines and a tricritical point. Using asimilar systems on realistic Bravais lattices.
simple Migdal-Kadanoff approximation, we show that a cer-
tain class of nonrandom geometric fluctuations may change The authors wish to thank A. P. Vieira for useful discus-
the tricritical behavior(by turning into a fully unstable node sions. This work has been supported by the Brazilian agency
the fixed point associated with the uniform tricritical behav- FAPESP.
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